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1 Introduction

In this short note, I give a brief introduction to derived categories, aiming to define and describe basic
properties of Db(X), the (bounded) derived category of coherent sheaves on a scheme X. These notes
were written for the first two lectures in a learning seminar about Bridgeland stability, following [MS17].
The primary reference for this note is [Huy06]; other references include (but definitely are not limited to)
[Bay11], [Tho00], and Akhil Mathew’s blog post. These notes are meant to collect existing knowledge
from the above sources and compile them into a shorter reference; as such, they will often be heavily based
on the above references. For outside readers, this note could be useful if you have learned about chain
complexes but want to know why we should use them, or if you simply want to learn about the derived
category.

2 Motivation

Why should we care about derived categories?
We use chain complexes all the time: in algebraic topology, chain complexes compute homology and

cohomology of topological spaces, giving us a variety of different invariants with which we can distinguish
many spaces. In algebraic geometry, chain complexes also give us sheaf cohomology (among other
cohomology theories), and coherent sheaves can arise as the (co)kernels of maps in complexes. In many
cases, (co)homology groups are sufficient for whatever purposes we had. However, as any student in
algebraic topology quickly learns, two spaces which are not homotopic may nevertheless have the same
homology groups! The idea here is to view the chain complexes as the invariant, rather than the
homology groups. In many cases, the chain complexes are able to differentiate the spaces, despite the
homology groups being identical.

https://amathew.wordpress.com/2011/06/23/trying-to-understand-bbd/
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Example 2.0.1. There are pretty extreme examples where common invariants fail to distinguish topological
spaces. For example, this StackExchange post describes two compact simply-connected manifolds with
identical cohomology rings, homology groups, and homotopy groups, yet are not homotopy equivalent.

Example 2.0.2. For an algebraic example, the two complexes

C[x, y]⊕2 (x,y)−−−→ C[x, y] and C[x, y] 0−→ C

have the same homology but are not quasi-isomorphic.

Another interesting place where chain complexes are used is in the definition of cohomology, constructed
from homology. The goal is to identify cohomology as the dual of homology, i.e. H∗ = Hom(H∗,Z). But
when the homology groups carry torsion, cohomology cannot be defined so naively: in order to make
cohomology a true dual to homology, we should be able to recover H∗ from H∗, but this doesn’t work
because Hom(−,Z) is always torsion-free. In the standard definition of H∗, we are actually supposed to
apply Hom(−,Z) at the level of chain complexes, and this indeed gives us a true dual: applying Hom(−,Z)
twice to the chain complex does recover the original complex.

In summary, we see that we should work with chain complexes rather than (co)homology
groups, and that’s precisely what we aim to do with derived categories! To get right to it: the derived
category of a category A is essentially just all of the chain complexes in A. We’ll make this
more precise throughout this note!

3 Abelian and triangulated categories

Our ultimate goal is to work entirely with chain complexes formed out of some category A. In order to
do so, the category A needs to have several useful properties - for example, having kernels and cokernels.
Our setting is that we assume A is an abelian category, and our goal will eventually be to construct and
describe the derived category D(A), which will turn out to be a triangulated category. In this section
we’ll give a quick introduction to abelian and triangulated categories. As a disclaimer, I’ll assume some
knowledge of homological algebra, which is discussed in great detail in [Huy06]; another great source is
[Wei94].

3.1 Abelian categories

Definition 3.1.1. A category A is additive if for all objects A, B, the Hom-set Hom(A, B) is an abelian
group such that:

(1) The composition maps Hom(A1, A2)×Hom(A2, A3)→ Hom(A1, A3) are bilinear.
(2) There exists a zero object 0 ∈ A, such that Hom(0, 0) is the trivial group.
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(3) For any two objects A1, A2, there is an object B which is the direct sum (and direct product) of
these two objects.

Informally, an additive category is just a category where the Hom-sets are abelian groups, and thus
carry an additive structure. Naturally, functors between additive categories are generally assumed to be
additive as well, in the sense that the induced maps on Hom-groups is a group homomorphism. There is a
very similar notion of k-linear categories for a field k, which is defined in pretty much the same way
except that the Hom-sets are k-vector spaces and functors should be k-linear maps.

Definition 3.1.2. A category A is abelian if it is additive and additionally satisfies another condition:

(4) Every morphism f admits a kernel and a cokernel, and the natural map coim(f) → im(f) is an
isomorphism.

Why are abelian categories important? Well, they carry most of the fundamental properties we’d like
in order to do homological algebra. In particular, exact sequences (usually) only make sense in abelian
categories. The canonical example of an abelian category is AbGrp, the category of abelian groups. I often
think of abelian categories as isolating the most important features of AbGrp and demanding they hold in
whatever category we’re actually working in.

Example 3.1.3. Here are some important examples of abelian categories.

(1) For a commutative ring R, the category R−mod of R-modules is abelian. Furthermore, the full
subcategory of finitely generated modules is also abelian. In fact, the Freyd-Mitchell embedding
theorem states that any (small) abelian category is a full subcategory of R−mod for some unital ring
R (not necessarily commutative). (Unfortunately, projective and injective objects do not necessarily
correspond to projective and injective R-modules under this correspondence.)

(2) Let X be a topological space. Then the category of sheaves of abelian groups, Sh(X), is abelian.
More generally, for O a sheaf of commutative rings on X, the subcategory of O−mod is abelian as
well.

(3)* Let X be a scheme. Then the categories of quasicoherent and coherent sheaves on X, QCoh(X)
and Coh(X), are both abelian. This example will be our main focus for the rest of the seminar!

3.2 Triangulated categories

In algebraic topology, we see long exact sequences arising from short exact sequences all the time. For
example, let X be a topological space, and A, B be subspaces whose interiors cover X. Then Mayer-Vietoris
gives us the long exact sequence of cohomology groups

· · · → Hn−1(A ∩B)→ Hn(X)→ Hn(A)⊕Hn(B)→ Hn(A ∩B)→ Hn+1(X)→ . . . .
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In some sense, we have a “short exact sequence” from the cohomology complex of X, to the direct sum of
the cohomology complexes of A and B, to the cohomology complex of A ∩B... but not exactly, because it
returns back to the cohomology complex of X, except shifted! This behavior of complexes is captured by
the notion of an exact triangle, which are the analogues of short exact sequences in abelian categories.
This leads to the notion of a triangulated category.

Definition 3.2.1. Let D be an additive category. The structure of a triangulated category on D is
given by the data of:

• an additive equivalent Σ : D → D, known as the shift functor (sometimes called translation
functor), and

• a set of exact triangles (sometimes called distinguished triangles) A→ B → C → Σ(A), subject
to axioms TR1-TR4, discussed below.

Notation 3.2.2. For any n ∈ Z and any object A ∈ D, we denote A[n] := Σn(A). Similarly, for a map
f : A→ B, denote by f [n] := Σn(f) to be the corresponding map A[n]→ B[n].

In the case of chain complexes, the shift functor will quite literally be shifting the indices, hence the
name!

Let’s go into detail about triangles, and especially the class of exact triangles. A triangle is denote by
A→ B → C → A[1]. First, a morphism between two triangles is just a commutative diagram

A B C A[1]

A′ B′ C ′ A′[1],

f g h f [1]

and an isomorphism of triangles is a diagram such that f, g, h are all isomorphisms.
exact triangles are a special class of triangles which satisfy certain axioms in order to give them the

properties reminiscent of short exact sequences. Let’s discuss them.
TR1

(i) Any triangle of the form A
id−→ A→ 0→ A[1] is exact.

(ii) The class of exact triangles is closed under isomorphism (of triangles).
(iii) Any morphism f : A→ B can be completed to a exact triangle A

f−→ B → C → A[1].

Part (iii) is particularly important! It roughly says that “there are enough exact triangles.” It looks a
bit strange due to the non-uniqueness of the completing object, but actually it turns out to be unique, up
to isomorphism! We call this the cone (of the morphism f), denoted by cone(f). We will see an explicit
construction of it in the derived category (working with chain complexes).
TR2
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Exact triangles are invariant under “rotation.” Concretely, A
f−→ B

g−→ C
h−→ A[1] is exact iff B

g−→ C
h−→

A[1] −f [1]−−−→ B[1] is exact.
TR3

A morphism of exact triangles is given by three maps. However, any two maps (which form a commutative
square on their respective objects) can be completed to a morphism of exact triangles.

In other words, suppose that there exists a commutative diagram of exact triangles with maps f, g:

A B C A[1]

A′ B′ C ′ A′[1].

f g f [1]

Then there exists a (not necessarily unique!) map h : C → C ′ which makes the diagram commute, i.e.,
completes f and g to a morphism between the two exact triangles.
TR4

This axiom is known as the octahedral axiom. Suppose we have a composition (not a exact triangle)
A

f−→ B
g−→ C. The octahedral axiom states that the cones of the morphisms f, g, g ◦ f form an exact

triangle. In other words, there is an exact triangle

cone(f)→ cone(g ◦ f)→ cone(g)→ cone(f)[1],

captured succinctly in the following diagram (where all of the “lines” are exact triangles):

cone(f)

B cone(g ◦ f)

C

A cone(g)
g◦f

f

g
.

Exact triangles behave very similarly to short exact sequences. One reason why they’re useful is that
secretly, long exact sequences come from exact triangles. One very important example is the
following:

Proposition 3.2.3. Let A→ B → C → A[1] be an exact triangle. Then for any object A0, we have long
exact sequences

· · · → Hom(A0, A[n])→ Hom(A0, B[n])→ Hom(A0, C[n])→ Hom(A0, A[n + 1])→ · · · ,

· · · → Hom(C[n], A0)→ Hom(B[n], A0)→ Hom(A[n], A0)→ Hom(C[n− 1], A0)→ · · · .
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Typically, when we deal with functors between triangulated categories, we’d like for them to be exact,
which means that they send exact triangles to exact triangles and they commute with the shift functor.

For more on the properties of triangulated categories, see [Huy06].

4 Derived categories

In this section, we describe our primary object of interest: the derived category. Our starting point is, of
course, the category of complexes.

4.1 Kom(A) and D(A)

Let A be an abelian category.

Definition 4.1.1. The category of complexes Kom(A) is the category whose objects are complexes
A• ∈ A and whose morphisms are morphisms of complexes.

It is fairly easy to see that Kom(A) is an abelian category.
Note that we may identify A as a full subcategory of Kom(A) by sending A ∈ A to the complex

concentrated in degree 0 (whose 0th term is A).
There is no problem defining a shift functor Σ: we simply “shift” the complex. More precisely,

suppose A• ∈ Kom(A) with differentials d•
A. Then (A•[1])i := Ai+1 and differential di

A[1] := −di+1
A

(note the difference in the differential!). This shift functor defines an equivalence of abelian categories
Kom(A)→ Kom(A). Furthermore, we again have the notion of cohomology functors H i : Kom(A)→ A,
taking a complex and returning the ith cohomology “group.”

Is the story over now? Unfortunately, no. The category Kom(A) is lacking in some important
departments. One is that Kom(A) is not a triangulated category, at least not with canonical choices for
exact triangles. For example, short exact sequences of complexes 0→ A• → B• → C• → 0 (with the zero
map for C• → A•[1]) do not satisfy the requirements to be an exact triangle. Another is due to one of our
original reason for working with complexes: we wish for complexes to tell us when things are isomorphic.
The corresponding notion of “isomorphism” for complexes is quasi-isomorphism (qis for short), which
is a map of complexes which induces an isomorphism on every (co)homology group. Unfortunately, one
major issue with complexes is that even when the original objects were isomorphic, the corresponding
complexes may only have a quasi-isomorphism in one direction! This doesn’t seem to be the answer, then:
we want the complexes to truly be isomorphic in the category. This is the main idea behind the derived
category: we essentially “invert” the quasi-isomorphisms so that they are true isomorphisms.

Theorem 4.1.2. There exists a category D(A), called the derived category of A, along with a functor

Q : Kom(A)→ D(A)
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such that:

(1) If f : A• → B• is a quasi-isomorphism, then Q(f) is an isomorphism in D(A).
(2) Q is universal with respect to this property, i.e. any functor F : Kom(A)→ D satisfying property

(1) factors uniquely over Q, so that there is a unique functor (up to isomorphism) G : D(A)→ D
with F ≃ G ◦Q:

Kom(A) D(A)

D.

Q

F ∃! G

This is just an existence theorem, but we’d like to get to know this category concretely. To do so, we
actually need to pass through the homotopy category K(A) first, but in my opinion this over-complicates
what’s going on. Therefore, I’ll give two descriptions: one concrete and skipping all of the technical details,
namely §4.2, and one slightly longer (but still skipping most of technical details, but at least covering an
overview of the route), namely §4.3.

4.2 The short route

Let’s get straight to the point.

Definition 4.2.1. The derived category D(A) (namely the unique category satisfying Theorem 4.1.2)
is the category obtained by taking the class of quasi-isomorphisms in Kom(A) and inverting all of them
formally.

4.3 The slightly longer route

As mentioned before, in order to be a bit more precise, we need to pass through the homotopy category.

Definition 4.3.1. The homotopy category of complexes K(A) is the category whose objects are
Obj(Kom(A)), and whose morphisms are just the morphisms of complexes up to chain homotopy, i.e.
HomK(A)(A•, B•) := HomKom(A)(A•, B•)/ ∼.

Why should we pass to the homotopy category? There are several higher-level reasons: when quasi-
isomorphisms are inverted, chain homotopies are in fact identified (akin to how when we localize a
commutative ring R, then a previously nonzero element r may now be identified with r/1 = 0 ∈ S−1R

after localization); another is that K(A) is a triangulated category, and since the quasi-isomorphisms are
form a localizing class in K(A) (but not in Kom(A)!), inverting them is very concrete and well-behaved,
and therefore easy to write down! This is a more general procedure, known as localization of a category.
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As a result D(A) will be defined to be the category obtained by inverting (the classes of) quasi-
isomorphisms in K(A).

This may sound pretty stupid, given that we directly inverted in §4.2, but more technical details of the
construction in the next section may shed some light on why this longer path is useful to think about.

4.4 Concrete description

Ok, let’s get to a concrete description of the derived category. First note that D(A) is a triangulated
category. Note: if you skipped §4.3, ignore every time K(A) is mentioned, or blackbox it as an
intermediate step.

The objects are just complexes in A, i.e. the objects of D(A) are precisely the objects of Kom(A).
The morphisms are more complicated. Let A• and B• be complexes. Then HomD(A) is the set of all

equivalence classes of diagrams
C•

A• B•,

qis

where C• → A• is a quasi-isomorphism. (These are sometimes known as “roofs.”) Two such diagrams
equivalent if they are dominated by a third such diagram in the homotopy category; in other words, there
should be a commutative diagram in K(A) of the form

C•

C•
1 C•

2

A• B•.

qis qis

qis

The reason that commutativity of this diagram is only required up to homotopy is because the construction
of the cone, which will be done shortly, is unique only up to homotopy. (Another reason why passing to
K(A) makes sense!) It will turn out that

How does composition of two morphisms work? Given diagrams in Hom(A•, B•) and Hom(B•, C•) of
the form

C•
1 C•

2

A• B•, B• C•,

qis qis

8



Merrick Cai Derived categories

the composition of these two is defined to be a diagram (commutative in K(A)) of the form

C•
0

C•
1 C•

2

A• B• C•.

qis qis

qis

It turns out that such a diagram indeed always exists, and furthermore it is unique up to equivalence.

Example 4.4.1. In algebraic topology, the Whitehead theorem states that the underlying topological
spaces |X| and |Y | of simplicial complexes X and Y are homotopy equivalent iff there are maps of simplicial
complexes

Z

X Y

inducing maps on homology H∗(X) ∼←− H∗(Z) ∼−→ H∗(Y ). What it’s really saying is that |X| and |Y | are
homotopy equivalent iff there is a Z inducing quasi-isomorphisms

CZ
•

CX
• CY

• .

qis qis

So this provides us with some motivation for defining roofs!

Example 4.4.2. One of the main problems with complexes is that quasi-isomorphic complexes may only
have maps in one direction. Consider the following quasi-isomorphism of complexes in AbGrp:

· · · 0 Z Z 0 · · ·

· · · 0 0 Z/2Z 0 · · ·

×2

.

This is clearly a quasi-isomorphism of complexes, but there is no quasi-isomorphism from the
bottom complex to the top complex, since there are no nontrivial maps from torsion to free. How
do roofs solve this problem? Well, if f : A• qis−→ B• is a quasi-isomorphism, we can construct a roof
representing this map f :

A•

A• B•.

id f

Now it becomes clear how roofs solve this problem. To get a “map” in the other direction, we just switch
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the roles of A• and B•, since both idA• and f are quasi-isomorphisms:

A•

B• A•.

f id

We still have several things remaining to define from our knowledge of triangulated categories: shift
functor, cones, and exact triangles.

The shift functor works exactly as it does in Kom(A): it shifts the indices of the complex.

Definition 4.4.3. Let f : A• → B• be a morphism of complexes, living either in K(A) or D(A). We
define its mapping cone (or simply cone) cone(f) to be the complex satisfying

cone(f)i = Ai+1 ⊕Bi, di
cone(f) :=

(
−di+1

A 0
f i+1 di

B

)
.

The cone comes with natural morphisms of complexes B• → cone(f) and cone(f)→ A•[1], namely the
obvious ones: the injection B• ↪→ A•[1]⊕B• and the projection A•[1]⊕B• → A•.

Remark 4.4.4. The inspiration for mapping cone comes from the topological mapping cone. It turns out
that the complex of singular chains of the topological mapping cone for some map of topological spaces
f : X → Y is homotopic to the algebraic mapping cone in Definition 4.4.3 of the induced map of complexes
from the complex of singular chains of X to the complex of singular chains of Y . Thanks to Rosie Shen
for pointing this out!

Example 4.4.5. Recall from Axiom TR1 that A
id−→ A→ 0→ A[1] is an exact triangle. But we defined

the cone (Definition 4.4.3) some very large complex: namely, in this case, cone(idA•) = A•[1]⊕A•. This
appears at first glance to be very different from 0. Now it is different from zero in that they are obviously
different complexes, but that only means they are different in Kom(A). We have an obvious map of
complexes cone(idA•) → 0. Directly from the directions of the differential of the cone, we see that in fact
as it’s defined, all of the cohomology groups of cone(idA•) are zero! This means that the induced maps on
cohomology H i(cone(idA•)→ H i(0) are just the maps 0→ 0, which are all isomorphisms, and hence the
map cone(idA•)→ 0 is a quasi-isomorphism, which means that in D(A) these two objects are isomorphic.
So we see that there is no issue after all!

Lastly, the exact triangles (in either K(A) or D(A)) are simply defined to be the triangles which are
isomorphic to some triangle of the form

A• f−→ B• → cone(f)→ A•[1],

where the two unnamed maps are the natural maps from Definition 4.4.3.
The crucial point is that these constructions and definitions give K(A) and D(A) the structure

of a triangulated category. Furthermore, the natural functor QA : K(A)→ D(A) is exact (as a functor
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of triangulated categories, which admittedly I didn’t define, but essentially just takes exact triangles to
exact triangles). Yay!

One final notational point: these complexes can be infinite in either (or both) directions. In practice, we
often only work with bounded sequences – either bounded on both sides, or bounded on one side.

Definition 4.4.6. Let Kom∗(A) for ∗ = +,−, b be the category of complexes A• with Ai = 0 for i≪ 0,
i≫ 0. amd |i| ≫ 0, respectively. By following the same procedure as above, we get K∗(A) and D∗(A)
(note that the objects are the same as in Kom∗(A), so it is still very much concrete!).

Let’s wrap up this subsection with some basic facts about the derived category.

Proposition 4.4.7. (i) The cohomology objects H i(A•) for A• ∈ D(A) are well-defined objects of A
(in other words, taking the equivalence class “up to homotopy and inverting quasi-isomorphisms”
doesn’t change the cohomology of a complex).

(ii) We can identify A as the full subcategory of D(A) with cohomology objects H i(−) = 0 for all I ̸= 0,
i.e. cohomology concentrated in degree 0. One direction is given by identifying an object of A with a
complex concentrated in degree 0. The other direction is taking H0 of a complex.

(iii) Let 0→ A
f−→ B → C → 0 be a short exact sequence in A. Then under the embedding A ↪→ D(A) (or

K(A)) this becomes an exact triangle A→ B → C → A[1], where the last map is given by composing
the quasi-isomorphism C → cone(f) and the natural map cone(f) → A[1]. In other words, short
exact sequences indeed give rise to exact triangles!

(iv) An exact triangle A• → B• → C• → A•[1] naturally induces a long exact sequence · · · → H i(A•)→
H i(B•)→ H i(C•)→ H i+1(A•)→ · · · .

(v) The forgetful functors D∗(A)→ D(A) define equivalences with the full triangulated subcategories of
all complexes A• ∈ D(A) with H i(A•) = 0 for i≪ 0, i≫ 0, and |i| ≫ 0.

4.5 Db(X)

The most important example is the bounded derived category of coherent sheaves.

Definition 4.5.1. Let X be a scheme. Then we define

Db(X) := Db(Coh(X))

to be the bounded derived category of the (abelian) category of coherent sheaves on X.

There is one minor problem: the category Coh(X) usually contains no non-trivial injective objects, which
makes computations in Db(Coh(X)) as currently defined a pain. Fortunately, its relative QCoh(X) does
contain enough injectives (and so does the category of OX -modules), at least when X is noetherian.
As a result, Db(Coh(X)) finds itself naturally as a full triangulated subcategory of Db(QCoh(X)). As a
result, whenever we talk about Db(X), we assume X is noetherian.
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Proposition 4.5.2. Let Db
Coh(QCoh(X)) denote the full triangulated subcategory of Db(QCoh(X)) con-

sisting of (bounded) complexes, all of whose cohomology sheaves are coherent. We have an equivalence of
categories

Db(X) ∼= Db
coh(QCoh(X)).

Phew! We’re saved. The upshot: when working in Db(X), we actually apply injective/projective/locally
free resolutions of quasicoherent sheaves, not just coherent sheaves. Computing derived functors
(see §5.2) and such can be done using resolutions of quasicoherent sheaves, and not some really bizarre
constructions (if they exist at all).

The category Db(X) is very interesting and important, and will barely be touched upon here for all of
its relevance and usage. Instead, we refer the reader to [Huy06] for a wonderful exposition of the topic!

Finally, we’ll cap off this (sub)section by quoting some fundamental results which illustrate how Db(X)
reveals much of the information about the original scheme X. Note: some of these results may involve
terminology that we have not defined. I don’t want to delve further into them (and instead refer you to
[Huy06]), only to give an idea to the reader why Db(X) should be useful to studying X itself.

Proposition 4.5.3. Let X be a noetherian scheme and Db(X) be its bounded derived category of
quasicoherent sheaves.

(1) Db(X) is an indecomposable triangulated category iff X is connected.
(2) Let X be a smooth projective variety. The homological dimension of Coh(X) is equal to the dimension

of X.
(3) Let C be a smooth projective curve. Then the previous statement implies that any object in Db(C) is

isomorphic to the direct sum of its (shifted) cohomology sheaves (which are coherent!).
(4) Let X be a projective variety over a field. Let L be an ample line bundle on X. Then the powers
{L⊗n | n ∈ Z} form an ample sequence in Coh(X) (and thus they form a spanning class in Db(X)).

(5) Let X and Y be smooth projective varieties over a field. If there is an exact equivalence Db(X) ≃
Db(Y ), then dim X = dim Y and their canonical bundles ωX and ωY have the same order (in their
Picard groups). If the (anti)canonical bundle of X is ample, then X and Y are isomorphic (and thus
the (anti)canonical bundle of Y is also ample).

(6) Building off of the previous result, if there is a fully faithful exact functor F : Db(X)→ Db(Y ) which
admits left and right adjoints, then in fact F has a very concrete description as a Fourier-Mukai
transform.

(7) If Coh(X) ≃ Coh(Y ) for smooth projective varieties X, Y , then X and Y are isomorphic.
(8) Let X be a smooth projective variety with an ample (anti)canonical bundle. Then Aut(Db(X)) ≃

Z× (Aut(X) ⋉ Pic(X)), where the Z is the shift functor, Aut(X) are (the automorphisms on Db(X)
induced by) automorphisms of X, and Pic(X) are tensoring by line bundles on X.
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5 Derived functors

We encounter lots of different kinds of functors between categories. Let’s list some important ones here
from algebraic geometry.

Example 5.0.1. (1) Let X be a scheme. Then the global sections functor Γ(X,−) : QCoh(X)→ AbGrp
along with its restriction Γ(X,−) : Coh(X)→ AbGrp are left exact functors.

(2) Let f : X → Y be a morphism of schemes. Then f∗ : QCoh(X) → QCoh(Y ) is left exact. Its
restriction f∗ : Coh(X)→ Coh(Y ) is also left exact.

(3) Let X be a scheme and F ∈ QCoh(X). Then Hom(F ,−) : QCoh(X)→ AbGrp is left exact.
(4) Let X be a scheme and F ∈ QCoh(X). Then Hom(F ,−) : QCoh(X)→ QCoh(X) is left exact.
(5) Let R be a sheaf of commutative rings on a scheme X, and let ShR(X) denote the abelian category

of R-modules. For F ∈ ShR(X), then F ⊗R − : ShR(X)→ ShR(X) is right exact.
(6) Let f : X → Y be a morphism of schemes. Then f∗ : QCoh(Y )→ QCoh(X) is right exact, as is its

restriction f∗ : Coh(Y )→ Coh(X). (Recall that f∗ ⊣ f∗ form an adjoint pair.)

These functors will (often) lift to functors in the derived category. But when we work with derived
categories, we need functors to be exact, so that they send exact triangles to exact triangles. In this
section we’ll construct the derived functors to form derived versions of the usual functors, and these
derived functors will enjoy the property of being exact.

5.1 Injectives, projectives, and resolutions

Not just any functors can be made into derived functors: we usually need to assume that the original
functor is either left or right exact. The reason is that taking resolutions by projective or injective objects
only “covers up” one side, so if the functor is left exact, then the non-exactness on the right side is patched
up by the injective resolution going off to infinity on the right.

Since this section is mostly just technical details, I’ll give a tl;dr: replace your complex with a
resolution. There, now feel free to skip to §5.2.

Definition 5.1.1. An abelian category A contains enough injectives (respectively enough projectives)
if for any object A ∈ A, there exists an injective map A → I to an injective object I (respectively, a
surjective map P → A from a projective object P ).

Notation 5.1.2. Assume A has enough injectives (respectively projectives). Denote by I (respectively
P) the full additive subcategory of A of injective objects (respectively projectives). The corresponding
constructions K∗(I) and K∗(P) follow.

One immediate corollary is that if A has enough injectives (respectively enough projectives) then
any object A ∈ A has an injective resolution 0 → A → I0 → · · · (respectively a projective resolution
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· · · → P −2 → P −1 → P 0 → A → 0); in particular, we have a quasi-isomorphism A → I• (respectively
P • → A). In fact this extends to any complex, in that if A has enough injectives (respectively enough
projectives), then we always have a quasi-isomorphism A• → I• of injectives (respectively P • → A•

of projectives) in K+(A) (and therefore an isomorphism in D+(A)). These quasi-isomorphisms play nicely
with the maps K∗(A)→ D∗(A). This can be summarized via the following main technical tool:

Proposition 5.1.3. Suppose that A has enough injectives (respectively, enough projectives). Then the
natural functor K+(I)→ D+(A) is an equivalence (respectively, K−(P)→ D−(A) is an equivalence).

Example 5.1.4. A familiar example goes back to algebraic topology: when computing Tor groups, we
need to replace one of the factors by a free resolution. This is because the tensor product is right exact, so
we “cover up” the lack of left exactness by allowing a (possibly) infinite resolution to the left! Finally, free
modules are projective, so we’re actually taking a projective resolution.

5.2 Derived functors

When we have an arbitrary functor between between abelian categories, it’s not always easy (actually, it
is, but it’s usually not very useful) to define the derived functors. Remember that we only care about
derived functors because they’re supposed to “exactify” our previously partially-exact functors. If they
don’t, well, they lose most of the properties that make them candidates for the derived versions of what
we’re used to, but maybe they’re not so meaningless.

The tl;dr: for a left (respectively, right) exact functor F : A → B of abelian categories, we
can “patch up” the non-exactness on the other side by taking an injective (respectively,
projective) resolution and applying F to these resolutions, resulting in an exact functor
RF : D+(A)→ D+(B) (respectively, LF : D−(A)→ D−(B)). Note that if we instead work with the
bounded derieved category Db(A), then we don’t ever need to worry about the + or −.

Ok, there are some technical points swept under the rug (namely, we can get away with non-injective
and non-projective resolutions using acyclic objects, and in fact often need to), but the real tl;dr is replace
your object with the relevant resolution and apply your functor to the resulting complex.
Now let’s see many important examples! For simplicity, I’ll always work in the bounded derived category
Db(A). Furthermore, whenever I take an injective resolution I’ll implicitly assume that the category has
enough injectives, and whenever I take a projective resolution I’ll implicitly assume that the category has
enough projectives. If you only want to see examples in Db(X), feel free to skip to the next subsection.

Example 5.2.1. (1) Let M ∈ A. Then HomA(M,−) : A → AbGrp is left exact, so we make the right
derived functor RHom(M,−) : Db(A)→ Db(AbGrp). This works by taking an injective resolution
B• qis−→ I• and applying HomA(M,−) to this resolution. Upon further reflection, the cohomology
groups of this resulting complex are precisely the Ext functors Exti

A(M,−). In fact, (assuming A
has enough injectives,) there are natural isomorphisms Exti

A(A, B) ≃ HomD(A)(A, B[i]).
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(2) Similarly, Tor groups are just the cohomology groups of the left derived tensor product. Suppose
we have A, B ∈ A. Then the derived tensor product A⊗L B is defined by taking a projective
resolution of either A or B (recall that both A⊗− and −⊗B are both right exact) and taking the
tensor with the other factor as complexes. Then TorA

i (A, B) is defined to be the ith cohomology
group of the resulting complex. In the case of R-modules, we usually take a free resolution.

(3) Extending the previous examples, we define the Hom functor in D(A) as follows. For A• a complex,
then Hom•(A•, B•) is the complex

Homi(A•, B•) :=
⊕

k

Hom(Ak, Bk+i), d(f) := dB ◦ f − (−1)idA.

This is well-behaved when B• is a complex of injectives, hence we may define RHom•(A•,−) :
D+(A) → D(AbGrp) by taking an injective resolution of the input and applying Hom•(A•,−).
We define Exti(A•, B•) := H i(RHom•(A•, B•)) and, just as before, obtain natural isomorphisms
Exti(A•, B•) ≃ HomD(A)(A•, B•[i]).

(3) Similarly, for a complex B•, we can define RHom•(−, B•) : D−(A)op → D(Ab). This defines a
bifunctor

D−(A)op ×D(A)→ D(AbGrp)
which is exact in both inputs. If A has enough injectives and projectives, then the two bifunctors
RHom•(−,−) (in each input) give the same bifunctor

RHom•(−,−) : D−(A)op ×D+(A)→ D(AbGrp).

(4) The group cohomology of a group G is defined to be the right derived functor of the functor M 7→MG

of invariants for a G-module M . Group homology is the left derived functor of the functor M 7→MG

of coinvariants.
(5) Similarly, Lie algebra cohomology is the right derived functor of the invariants functor (−)g, and Lie

algebra homology is the left derived functor of the coinvariants functor (−)g.
(6) Once again, Hochschild cohomology is the right derived functor of the invariants functor (−)A, and

Hochschild homology is the left derived functor of the coinvariants functor (−)/[A,−].
(7) Étale cohomology also arises as a derived functor.

5.3 Derived functors on Db(X)

Let X be a noetherian scheme. Recall that QCoh(X) has enough injectives. Let’s see some important
examples of derived functors on Db(X).

Example 5.3.1. (1) The global sections functor Γ : QCoh(X) → Vec(k) is a left exact functor.
Since QCoh(X) has enough injectives, we can define RΓ : D+(QCoh) → D+(Vec(k)) by replacing
F• by an injective resolution and then applying Γ term by term. In fact, the sheaf cohomology
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groups H i(X,F•) (note the similar notation to the cohomology functors/objects...) are precisely
defined to be the cohomology groups of the complex of vector spaces RΓ(F•). For F• = F a sheaf
these are just the ordinary sheaf cohomology groups; for a complex, they are sometimes called the
hypercohomology groups.

Since every complex of vector spaces splits, in fact RΓ(F•) ≃⊕n∈Z Hn(X,F•)[−n] in D+(Vec(k)).
(2) Let f : X → Y be a map of noetherian schemes. The direct image functor f∗ : QCoh(X) →

QCoh(Y ) is a left exact functor. So naturally, Rf∗ : D+(QCoh(X)) → D+(QCoh(Y )) works by
taking a complex F•, replacing it by an injective resolution, and applying f∗ to this complex.

The higher direct images Rif∗(F•) are the cohomology sheaves of Rf∗(F•) (specifically the
ith one in this case). If F is just a quasicoherent sheaf then the higher direct images Rif∗F are
quasicoherent sheaves on Y .

If f is proper, then Rif∗ sends a complex of coherent sheaves to a complex of coherent sheaves,
thus defining an exact functor Rf∗ : Db(X)→ Db(Y ).

(3) Since QCoh(X) has enough injectives, we can define the Hom complexes RHom(F•, E•) on Db(X)
by replacing E• by an injective resolution (i.e., a quasi-isomorphic complex of injective sheaves) and
applying Hom(F•,−). Typically there are not enough projective objects in Coh(X). However, we
can actually use locally free sheaves in place of projective objects when resolving F•. In other words,
we may compute RHom(F•, E•) either by resolving F• with locally free sheaves (technical remark:
we need X to be regular to ensure that this resolution is bounded), or by resolving E• by injective
sheaves, and then applying the appropriate Hom.

(4) As before, we define the Ext complexes to be Exti(F•, E•) := RiHom(F•, E•[i]).
(5) We define the dual complex F•∨ of a complex F• ∈ Db(X) to be F•∨ := RHom(F•,OX).
(6) We can define the derived tensor product E• ⊗L F• by taking a locally free resolution of both

complexes and applying the usual tensor product of complexes (i.e., taking the total complex of the
double complex). (This is essentially due to the fact that tensoring with a locally free sheaf on the
level of coherent/quasicoherent sheaves is exact.) Just as in the RHom case, locally free objects are
sufficient stand-ins for the lack of projective objects!

We also define the Tor complexes to be T ori(F•, E•) := H−i(F• ⊗L E•). Note that when the
inputs are just ordinary coherent sheaves, this agrees with the usual definition of Tor sheaves!

(7) Let f : X → Y . We define the inverse image functor Lf∗ as follows. Recall that f∗ =(
OX ⊗f−1(OY ) (−)

)
◦ f−1(−). The f−1 is exact, while the other factor is right exact, hence f∗ is

right exact. Then we define Lf∗ :=
(
OX ⊗L

f−1(OY ) (−)
)
◦ f−1(−).
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6 Bounded t-structures and hearts

In this section, we take a quick detour to discuss some important notions in triangulated categories. Very
roughly speaking, we have a notion of “degrees” of a complex M• ∈ D(A) which are exactly those integers
n for which the nth cohomology objects of M• are nonzero. This allows us to understand the “nonnegative”
and “nonpositive” objects in D(A), as well as speak of A ↪→ D(A) as the complexes concentrated in degree
0. The goal of (bounded) t-structures and hearts is to axiomatize these notions. It turns out that there
are many other t-structures obeying the same important properties, but give very different viewpoints on
the category. One important example is the notion of a perverse sheaf, which arises as a result of another
t-stucture on D(A)! Furthermore, we discuss the important notion of filtration by cohomology.

6.1 Motivation from D(A)

We saw that the cohomology functors carry lots of important information. Indeed, we have two subcategories
D≥0(A) and D≤0(A) of D(A), which consist of complexes with no cohomology in negative degrees and no
cohomology in positive degrees. These are induced by truncation functors, which do exactly as their
name suggests: they truncate the complex at a certain point.

Definition 6.1.1. Define the truncation functors τ≤i and τ≥ j as follows. For a complex M• ∈ D(A),
then

(τ≤iM
•)n :=


Mn n < i,

ker(M i →M i+1) n = i,

0 n > i.

(τ≥jM•)n :=


Mn n ≥ j,

coker(Xj−2 → Xj−1) n = j − 1,

0 n < j − 1.

Concretely, they just truncate the complex:

τ≤0(· · · → X−2 → X−1 → X0 → 0→ X2 → X3 → X4 →→ · · · ) = · · · → X−2 → X−1 → X0 → 0→ 0→ · · · .

Note that in particular, if Hn(M•) = 0 for all n > i, then τi(M•) ∼= M• in D(A), thus replacing a
(possibly infinite) complex with bounded cohomology by a complex which is bounded in the
same way.

A bit more thought and we see that for any M• ∈ D(A), we have the exact triangle

τ≤0M• →M• → τ≥1M• → τ≤0M•[1].

This is essentially constructing what is called the standard t-structure on D(A). The heart is
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D≤0(A) ∩D≥0(A) = A ⊂ D(A), and in this special example D(heart) is precisely the original category
D(A). Note that this is not true in general!

The notion of a t-structure is a generalization of these crucial properties.

6.2 t-structures

Let D be a triangulated category.

Definition 6.2.1. Let D≤0 and D≥0 be full subcategories of D closed under isomorphism (i.e. saturated).
Define D≤n := D≤0[−n] and D≥n := D≥0[−n]. Then (D≤0,D≥0) defines a t-structure on D if the
following conditions are satisfied:

(1) HomD(D≤0,D≥0) = 0.
(2) D≤0 ⊆ D≤1 and D≥1 ⊆ D≥0. Explicitly, for any object X ∈ D≤0, then X[1] is also in D≤0 (and

similarly for D≥0). This is equivalent to D≤n ⊆ D≤m for any n < m, and similarly for ≥.
(3) For every object X ∈ D, we have an exact triangle A → X → B → A[1] where A ∈ D≤0 and

B ∈ D≥1, which splits X into the “nonpositive” and “positive” parts.

As mentioned before, this definition is deeply inspired by the example from D(A)!

Example 6.2.2. Let D = D(A) be the derived category of some abelian category A. The standard
t-structure is constructed as follows. The subcategories D≤n are just complexes supported in degrees at
most n, and D≥n are complexes supported in degrees at least n. The second condition is clear: the functor
X 7→ X[1] just shifts the entire complex one degree down, which clearly preserves the property of being
supported only in nonpositive degree. The first and third conditions follow from truncation functors.

Definition 6.2.3. A t-structure is bounded if⋂
n∈Z
D≤n =

⋂
n∈Z
D≥n = {0}.

Example 6.2.4. If we restrict the standard t-structure to the bounded derived category (i.e. the full
subcategory of bounded complexes) Db(A) ⊂ D(A), then we get the standard t-structure on Db(A). By
definition no bounded complex has infinite cohomology in either direction, so the standard t-structure on
Db(A) is a bounded t-structure. (It is not on D(A)!)

In fact, we always have an analogue of the truncation functors from D(A) in any triangulated category
carrying a t-structure, and these truncation functors essentially explain the structure of the D≤n and D≥n.

Proposition 6.2.5. Let D be a triangulated category with a t-structure. Then there are truncation functors
τ≤i and τ≥j satisfying τ≤iX ∈ D≤i and τ≥jX ∈ D≥j for any X ∈ D. They satisfy the property that for
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any X ∈ D and any N , we have exact triangles

τ≤N X → X → τ≥N+1X → τ≤N X[1].

In fact, they are precisely the adjoints of the inclusions of categories: τ≤N is the right adjoint to the
inclusion D≤N ↪→ D, and τ≥N is the left adjoint to the inclusion D≥N ↪→ D.

Feel free to just skip to the next subsection if you don’t care about truncation functors and want to know
what a heart is. But if you’re interested in how the truncation functors work, the rest of this subsection
will explain that.
Proof. We can prove it as follows. First we construct a candidate for each τ≤N X and τ≥N X, which are
given by condition (3) in Definition 6.2.1 (by translating). We then show the functoriality of the τ , i.e.
that they are adjoints to the inclusion of categories. Let me illustrate it in the case of D≥N , since it is
exactly the same for τ≤N . We have the exact triangle

τ≤N−1X → X → τ≥N X → τ≤N−1X[1],

but we don’t know (yet) that these objects are unique. Now we obtain a long exact sequence using
HomD(−, Y ) for Y ∈ D≥N :

0 = HomD(τ≤N−1X[1], Y )→ HomD(τ≥N X, Y )→ HomD(X, Y )→ HomD(τ≤N−1X, Y ) = 0.

The first and last terms vanish by the conditions in Definition 6.2.1. Thus we get a natural isomorphism

HomD(τ≥N X, Y ) ∼−→ HomD(X, Y ).

The remaining step is to note that both τ≥N X and Y live in D≥N , which is a full subcategory of D, hence
we obtain

HomD≥N
(τ≥N X, Y ) = HomD(τ≥N X, Y ) ∼−→ HomD(X, Y ),

which shows that τ≥N indeed is the left adjoint to the inclusion D≥N ↪→ D. □

Example 6.2.6. Let M• ∈ D(A) be a complex, where D(A) is equipped with the standard t-structure.
Then τ≤N M• is a complex whose cohomology objects H i are the same as those of H i(M•) for i ≤ N , and
zero for i > N . The same result holds for τ≥N M•.

Corollary 6.2.6.1. X ∈ D≤0 ⇐⇒ τ≥1X = 0. In other words, D≤0 and D≥1 are orthogonal complements
to each other.

Of course, this is just a really abstract way of saying “an integer is nonnegative iff it is not positive!”
Mathematicians sure like to do things the hard way.

Corollary 6.2.6.2. D≥N and D≤N are closed under extensions.

Let me list two more properties of the truncation functors.
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Proposition 6.2.7. 1. For a ≤ b, then τ≤a ◦ τ≤b = τ≤a.
2. For a ≤ b, τ≥a ◦ τ≤b = τ≤b ◦ τ≥a.

The first is easily seen using adjoints. The second is from the octahedral axiom TR4.
One very important glimpse of future sections is by looking at Proposition 6.2.7 through the lens of

D(A).

Example 6.2.8. In Example 6.2.6, we saw that the truncation functors “split” complexes in D(A) into a
“lower” part and an “upper” part, with respect to cohomology. Upon closer reflection, we in fact see that
HN (M•) is almost τ≤N τ≥N M• – the former is an object of A, which is identified with complexes in D(A)
concentrated in degree 0, while the latter is an object which is concentrated in degree N . The “objects”
themselves match, up to shifting! This is summarized in the following proposition. Although an arbitrary
triangulated category doesn’t have cohomology functors, a t-structure allows us to view cohomology
as just truncating around N . We’ll see this laid out in Definition 6.4.4.

Corollary 6.2.8.1. On D(A), the cohomology functors H i are just τ≤iτ≥i(−)[−i], after taking the
indentification A ↔ {complexes in D(A) concentrated in degree zero}. An analogous statement will be
true for an arbitrary triangulated category D with some t-structure: see Definition 6.4.4.

Finally, one last remark that makes the truncation functors more concrete: we have

τ≤N X = (τ≤0(X[N ]))[−N ],

and analogously for τ≥N . In other words, just as in the case of complexes, to cut off at N we just
shift downwards by N and cut off at 0, then shift back by N .

6.3 Filtration by cohomology

Let’s return to the setting of D(A), the derived category of an abelian category A. Our original motivation
for using complexes, rather than simply the cohomology objects, is that complexes remember more
information than all of the cohomology objects. Let’s start with an important example.

Example 6.3.1. Let R be a ring. One useful way to study an R-module M is by considering its composition
series. We take a filtration of M by submodules 0 = M0 ⊂M1 ⊂M2 ⊂ · · · ⊂M such that each Mi+1/Mi

is a simple R-module. The Jordan-Hölder theorem implies that the set of the isomorphism classes of
the quotients, counted with multiplicity, is uniquely determined by M and independent of the filtration
used.

Of course, the catch is that the composition series, while simple to describe, carries less information
than the original module itself. Indeed, we have very simple examples taken from Ext1 already: if
Ext1

R(M1, M2) ̸= 0 for two (not necessarily distinct) simple modules M1, M2, then the modules whose
simple quotients in the composition series is {M1, M2} is in bijection with Ext1

R(M1, M2). For a particularly
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simple example, the Z-modules Z/4Z and Z/2Z× Z/2Z are already nonisomorphic, yet have the same
simple quotients in their composition series, namely {Z/2Z,Z/2Z}.

One useful way to think about complexes is that complexes are analogous to the original module,
while the cohomology objects are analogous to the composition series. It stands to reason
that we should be able to “filter” our complex by the cohomology objects, akin to the filtration in the
composition series. This is precisely the case, and very reasonably, the tool used to isolate the cohomology
objects one at a time is the truncation functor from Definition 6.1.1.

Let us now make this concrete. Let A be an abelian category and Db(A) be the bounded derived
category. Let M• ∈ Db(A), and suppose that the cohomology groups H i(M•) ̸= 0 ⇐⇒ i ∈ I for some
finite set I. Then let n = max(I). Then Proposition 6.2.5 tells us that we have the exact triangle

τ≤n−1M• →M• → τ≥nM• → τ≤n−1M•[1].

As explained in Example 6.2.8 and Corollary 6.2.8.1, we have that Hn(M•) = τ≤nτ≥nM•. But since the
cohomology H i(τ≥nM•) vanishes for i > n, it follows that τ≤nτ≥nM• ∼= τ≥n. Thus the exact triangle
becomes

τ≤n−1M• →M• → Hn(M•)[−n]→ τ≤n−1M•[1].
Now we iterate this process. The object τ≤n−1M• =: N• is again a bounded complex whose cohomology is
nonzero precisely for the set I−{n}; its maximum nonzero cohomology is strictly smaller than n := max(I).
This process must terminate since at each step, we strip off the highest cohomology object of the
complex, and by assumption the cohomology is nonzero only for finitely many indices. We eventually
obtain an exact triangle of the form

τ≤m−1C• → C• → Hm(C•)[−m]→ (τ≤m−1C•)[1],

where C• is (quasi-isomorphic to) a complex concentrated in degree m. Then τ≤m−1C• = 0 ∈ Db(A), so
this process has terminated.

In conclusion, we find that

Proposition 6.3.2. Let M ∈ Db(A) be a complex. Let k1 < k2 < · · · < kn be the indices where M has
nonzero cohomology. Then there is a sequence of maps

0 τ≤k1−1M τ≤k2−1M · · · τ≤kn−1M M

Hk1(M)[−k1] Hk2(M)[−k2] Hkn(M)[−kn]

where each triangle τ≤ki−1−1M → τ≤ki−1M → Hki(M)[−ki]→ τ≤ki−1−1M is an exact triangle.

This is known as the filtration of M by its cohomology objects. It bears significant resemblance
to the notion of building some object from its composition series as a possibly non-trivial extension!
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Remark 6.3.3. It turns out that this notion is quite useful: many spectral sequence arguments can actually
be proven using the filtration by cohomology.

6.4 Heart of a t-structure

Definition 6.4.1. Let D be a triangulated category and (D≤0,D≥0) be a t-structure. Then the heart of
this t-structure, denoted by D♡, is defined to be D≥0 ∩ D≤0.

Example 6.4.2. Letting D = D(A) with the standard t-structure, we have D(A)♡ = A ⊂ D(A) under
the canonical identification.

A major result is that the heart is always an abelian category. (The interested reader may consult
Akhil Mathew’s blog post about BDD to see how to construct the kernel and cokernel.) Unfortunately,
D(D♡) usually does not recover D! In fact, in many cases one cannot even define a map between these
two categories.

In the case when the t-structure is bounded, there is an equivalent definition of the heart:

Definition 6.4.3 (Heart of a bounded t-structure). Let D be a triangulated category with a bounded
t-structure given by (D≤0,D≥0). Then the heart of this bounded t-structure is a full abelian subcategory
A# ⊂ D such that

(1) For k1 > k2, then HomD(A#[k1],A#[k2]) = 0.
(2) For every nonzero E ∈ D, there exist integers k1 > k2 > · · · > kn and a sequence of exact triangles

0 = E0 E1 E2 · · · En−1 En = E

A1 A2 An

such that each triangle in the diagram Ei → Ei+1 → Ai → Ei[1] is an exact triangle (the ⇝
arrows represent the connected morphism C → A[1] in exact triangles A→ B → C → A[1]), and
Ai ∈ A#[k1].

Notice that this definition bears serious resemblance to the filtration of a bounded complex by its
cohomology objects, discussed in §6.3 and Proposition 6.3.2. Indeed, this lends itself to the following:

Definition 6.4.4. (t-cohomology) Let D be a triangulated category with t-structure (D≤0,D≥0). The
zeroth t-cohomology of an object M ∈ D is defined to be tH0(M) := τ≤0τ≥0M ∈ D♡. For any n ∈ Z,
the nth t-cohomology is defined to be the functor tHn(−) : M 7→ tH0(M [n]) = (τ≤nτ≥nM)[n] ∈ D♡.

These are called the cohomology objects of M and if the t-structure is a bounded t-structure, these
cohomology objects are exactly the Ai appearing in Definition 6.4.3. These t-cohomology functors
really let us reconstruct everything we know and love about the derived category (namely, working very
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concretely with complexes and their indices); a triangulated category with a t-structure behaves
very similarly to the standard t-structure on a derived category! Let’s see how:

Proposition 6.4.5. (1) A bounded t-structure is uniquely determined by its heart. (On the other hand,
D(A) is uniquely determined by A.)

(2) tH0 takes exact triangles in D to long exact sequences in D♡. (This is also true for D(A), with the
functor H0.)

(3) A map f in D is an isomorphism iff all of the induced maps on tH i are isomorphisms for each i ∈ Z.
(This is just the definition of a quasi-isomorphism for complexes.)

(4)

D≤N = {M ∈ D | tHn(M) = 0 for all n > N},

D≥N = {M ∈ D | tHn(M) = 0 for all n < N}.

(We have the exact same statement in the derived category.)

Therefore, we can imagine that a triangulated category D (equipped with a bounded t-structure) as
being “almost” a direct sum ⊕

n∈ZD♡[n], in the sense that it is put together through finitely many parts,
each living in some D♡[n]. (Of course, the way that they are put together is very complicated and akin to
Ext groups!) Therefore we might imagine the following picture:

· · · A[4] A[3] A[2] A[1] A[0] A[−1] A[−2] A[−3] A[−4] · · · .

Different t-structures give us different ways to view and understand our category. For example, perverse
sheaves arise from yet another t-structure on Db(X), and they turn out to be very useful and important
indeed!

6.5 Torsion pairs

Hopefully we agree that t-structures are very interesting and potentially useful in understanding triangulated
categories. But how exactly do we find t-structures? Do we wait for geniuses to come up with new ideas?

Fortunately, there is a method to generate many nontrivial t-structures. It is known as tilting at a
torsion pair.

Definition 6.5.1. Let A be an abelian category. A pair (T ,F) of full additive subcategories is a torsion
pair if

(i) HomA(T ,F) = 0, and
(ii) Every E ∈ A fits into a short exact sequence 0→ T → E → F → 0 with T ∈ T and F ∈ F . (Note

that property (1) implies that this short exact sequence is automatically unique and functorial in E.)
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In accordance with the picture in the previous subsection, we might have the following updated picture,
bringing the torsion pair into account:

· · ·

A[2]︷ ︸︸ ︷
T [2] F [2]

A[1]︷ ︸︸ ︷
T [1] F [1]

A[0]︷ ︸︸ ︷
T [0] F [0]

A[−1]︷ ︸︸ ︷
T [−1] F [−1]

A[−2]︷ ︸︸ ︷
T [−2] F [−2] · · · .

The canonical example (from which it derives its name) A = Coh(X), with T being torsion sheaves
and F be torsion-free sheaves. There are many other examples in quivers, but let us skip those and discuss
a more involved example, which can be safely skipped if you only care about derived categories (and not
at all about stability conditions). I am covering it because it will come up in our seminar on Bridgeland
stability, following [MS17], but it is not as relevant to the general discussion on derived categories.

Example 6.5.2. Let C be a smooth projective curve and let A = Coh(C). For a vector bundle E
on C, define its slope to be µ(E) := deg(E)

rank(E) . For λ ∈ Q, we say that E is semistable of slope λ if
µ(E) = λ and every nonzero subbundle Ẽ ⊂ E has slope ≤ λ. It turns out that every E has a unique
Harder-Narasimhan filtration (HN filtration), which is a filtration

0 = E0 ⊊ E1 ⊆ E2 ⊊ · · · ⊆ Em = E

such that each Ei/Ei−1 is semistable of slope λi and the λi are strictly decreasing, i.e. λ1 > λ2 > · · · > λm.
Let µ ∈ R. Then A≥µ be the full subcategory consisting of vector bundles whose HN filtration quotients

all have slope ≥ µ, and similarly let A<µ be the full subcategory consisting of vector bundles whose HN
filtration quotients all have slope < µ. It turns out that (A≥µ,A<µ) is a torsion pair. The Hom-vanishing
is due to the fact that if all of the slopes (of the quotients in the HN filtration) of E are strictly less than
all of the slopes (of the quotients in the HN filtration) of F , then HomA(E ,F) = 0. Cool!

For more information on the Harder-Narasimhan filtration, see Jacob Lurie’s notes.

The interesting point is that torsion pairs create new hearts from old hearts.

Proposition 6.5.3. Let D be a triangulated category with bounded t-structure. Let A = D♡ be its heart.
Suppose we have a torsion pair (T ,F) in A. Then

A♯ := {E ∈ D | tH0(E) ∈ T , tH−1(E) ∈ F , tH i(E) = 0 for i ̸= 0,−1}

defines a heart of a (different) bounded t-structure in D. (Replace D by D(A) and tH i by H i for the
concrete example of a derived category.)

While objects in A are extensions of some F ∈ F by some T ∈ T , hence determined by an element in
Ext1(F, T ), objects in A♯ are extensions of some T by some F [1], hence determined by some element in
Ext1(T, F [1]) = Ext2(T, F ). It is worth keeping the following picture in mind.
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· · ·

A[2] A[1] A[0] A[−1] A[−2]︷ ︸︸ ︷︷ ︸︸ ︷︷ ︸︸ ︷︷ ︸︸ ︷︷ ︸︸ ︷
T [2] F [2] T [1] F [1] T [0] F [0] T [−1] F [−1] T [−2] F [−2]︸ ︷︷ ︸︸ ︷︷ ︸︸ ︷︷ ︸︸ ︷︷ ︸

A♯[1] A♯[0] A♯[−1] A♯[−2]

· · · .

There are no morphisms going from left to right, and any object can be written as successive extensions
of objects in the building blocks, starting from the right and extending to the left. Now the name “tilting”
becomes clear!

We can repeatedly tilt a bounded t-structure to iteratively obtain new bounded t-structures. In the
case of D = Db(A), we have a canonical starting point of the standard t-structure. In fact, this process
does result in quite a few t-structures. Arend Bayer summarizes the power of tilting to generate new
t-structures in this MathOverflow post. In particular, if A,A♯ are hearts of bounded t-structures and A♯

is contained in the extension closure ⟨A,A[1]⟩, then in fact we can obtain A♯ by a tilt of A: explicitly, it’s
the tilt of the torsion pair (A ∩A♯,A ∩A♯[−1]).

It turns out that in algebraic geometry, tilting is intricately related to quivers. Let’s see a very
interesing example.

Example 6.5.4. Consider the abelian category Coh(P1). Let (T ,F) = (A≥0,A<0) (see Example 6.5.2);
we obtain the tilted heart A♯. Also consider the quiver

Q = • • .

The abelian categories Coh(P1) and Rep(Q) are very different. For example, Rep(Q) has Jordan-Hölder
filtrations, while Coh(P1) does not. However, their derived categories are equivalent:

ΦT : Db(Coh(P1)) ∼−→ Db(Rep(Q)).

This equivalence is defined by the tilting sheaf T = OP1 ⊕ OP1(1), which will be discussed shortly.
Furthermore, ΦT (A♯) = Rep(Q) ⊂ Db(Rep(Q)).

So using different t-structures, two very different abelian categories can both exist as hearts of the same
triangulated category!

Definition 6.5.5 (Tilting sheaf). Let X be a smooth projective C-variety. Then a coherent sheaf T on X

is a tilting sheaf if:

(i) The tilting algebra A = EndOX
(T ) has finite global dimension.

(ii) Extk
OX

(T, T ) = 0 for all k > 0.
(iii) Using “classical operations” (i.e., cones, direct summands, shifts, etc.) we can generate all of

Db(Coh(X)) from T .

Theorem 6.5.6 (Baer, Bondal). Let T be a tilting sheaf on X and let A = EndOX
(T ) be the tilting

algebra. Then the categories Db(Coh(X)) and Db(A−mod) are equivalent.
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More specifically, they are induced from functors F := HomOX
(T,−) and G := −⊗A T :

RF : Db(Coh(X)) ∼−→ Db(A−mod),

Rg : Db(A−mod) ∼−→ Db(Coh(X)).

In Example 6.5.4, A = EndOP1 (OP1 ⊕OP1(1)) = CQ, where CQ is the path algebra of Q.
There are many more complicated examples; for example, see [Cra07].
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